差分

ナビゲーションに移動 検索に移動
635 バイト追加 、 2023年9月25日 (月) 19:48
{{Epi StatFloating_Menu}} ==Basic concept of statistical tests==*First remind that**Statistical test is to test
==Comparing Proportions==
|rowspan="3" style="vertical-align:top"|
*'''Paired Student's t test'''
::''<math>H_0</math> is '''mean of paired differences''' in the population is '''zero'''.''
::<math>
\begin{align}
|rowspan="3" style="vertical-align:top"|
*'''Wilcoxon rank sum test'''<br>='''Mann-Whitney test'''
::''<math>H_0</math> is distribution '''medians or means of outcomes ranks''' in both the two population'''s''' are the same''
:#To rank whole combined observations of two groups
:#To separate back the ranks into two groups
|rowspan="3" style="vertical-align:top"|
*'''Wilcoxon signed rank test'''
::''<math>H_0</math> is '''median of paired differences''' in the population is zero''
:#To calculate differences between pairs and discard 0 differences
:#To rank the absolute values of differences (ignoring 0)
::<math>n</math> is sample size (whole combined number of observations)
::<math>k</math> is number of groups
 
<!--
::The variance of whole combined observations is
::<math>s^2=\frac{\sum_{i=1}^n (x_i-\bar{x})^2}{n-1}</math>
::The numarator is ''sum of square''
::<math>\sum_{i=1}^n (x_i-\bar{x})^2</math>
::<math>= \sum_{i=1}^n x_i^2 - 2\bar{x} \sum_{i=1}^n x_i + \bar{x}^2 \sum_{i=1}^n 1</math>
-->
|style="vertical-align:top"|
|style="vertical-align:top"|
*'''Kruskall-Wallis test'''
::''<math>H_0</math> is distribution '''medians or means of outcomes ranks''' in the all population'''s''' are the same''
:#To rank whole combined observations of all groups
:#To separate back the ranks into original groups
|}
<==Comparing Survival time=={|class="wikitable"|-!style="width:50%"|Life table!style="width:50%"|Kaplan-Meyer|-::The variance of whole combined observations is |colspan="2"|::*'''Log rank test<mathbr>s^2=\frac{\sum_{i=1}^n (x_iMantel-Cox <math>\bar{x})chi^2}{n-1}</math>::The numarator is 'test'sum of square''::<math>\sum_{i=1}^n (x_i-\bar{x})^2H_0</math>is event (survival) rates in each interval are all the same in two groups::<math>= \sum_{i=1}^n x_i^2 - 2Log\bar{x} rank\sum_{istatistics =1}^n x_i + \barfrac{x}^2 \sum_{i=1}^n 1</math>--!>|}

案内メニュー