Statistical test

提供: Vaccipedia | Resources for Vaccines, Tropical medicine and Travel medicine
2022年12月11日 (日) 18:24時点におけるVaccipedia.admin (トーク | 投稿記録)による版 (→‎Means)
ナビゲーションに移動 検索に移動

Proportions

Independent samples
(Unpaired in case of two)
Dependent samples
(Paired in case of two)
2 proportions
  • Z test
[math]\displaystyle{ \begin{align} z & = \frac{p_1-p_2}{SE_{pooled(p_1-p_2)}} \\ & = \frac{p_1-p_2}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_1}+\frac{\bar{p}(1-\bar{p})}{n_2}}} \end{align} }[/math]
≥ 3 proportions Enough large sample
  • [math]\displaystyle{ \chi^2 }[/math] test
[math]\displaystyle{ \chi^2 = \sum \frac{(O - E)^2}{E} }[/math]
[math]\displaystyle{ O }[/math] = observed values
[math]\displaystyle{ E }[/math] = expected values
  • McNemar's [math]\displaystyle{ \chi^2 }[/math] test
[math]\displaystyle{ \begin{align} & McNemar's\ \chi^2 \\ & = \frac{(n_1-n_2)^2}{n_1+n_2} \end{align} }[/math]
[math]\displaystyle{ n_i }[/math] = number of observations in discordant pair
Testing linear association
  • [math]\displaystyle{ \chi^2 }[/math] trend test
[math]\displaystyle{ \begin{align} & \chi^2 trend \\ & = \frac{(\bar{x_1}-\bar{x_2})^2}{s^2(\frac{1}{n_1}+\frac{1}{n_2})} \\ & s = \sqrt{\sum \frac{(x_i-\bar{x_i})^2}{n-1}} \end{align} }[/math]
[math]\displaystyle{ x_i }[/math] = weighted values
[math]\displaystyle{ n_i }[/math] = number of observations
≥1 cell expected value <5

Fisher's exact test

  • very rare in real researches

Means

Parametric
i.e., normally distributed
Non-parametric
i.e., not normally distributed
Independent samples
(Unpaired in case of two)
Dependent samples
(Paired in case of two)
Independent samples
(Unpaired in case of two)
Dependent samples
(Paired in case of two)
2 means

Enough large sample

  • Z test
[math]\displaystyle{ \begin{align} z & = \frac{\bar{x_1}-\bar{x_2}}{SE_{(\bar{x_1}-\bar{x_2})}} \\ & = \frac{\bar{x_1}-\bar{x_2}}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}} \end{align} }[/math]
  • Paired Student's t test
[math]\displaystyle{ \begin{align} paired\ t & = \frac{\bar{d}}{SE_d} \\ & = \frac{\bar{d}}{\frac{s}{\sqrt{n}}} \\ \end{align} }[/math]
where [math]\displaystyle{ \bar{d} }[/math] is the mean of differences of paired observations
  • Wilcoxon rank sum test
    • AKA Mann-Whitney test
  • Wilcoxon signed rank test
    • here 'signed' means 'take into account signs of differences of paired data'
Small sample size <30 in a group
  • Student's t test
[math]\displaystyle{ \begin{align} t & = \frac{\bar{x_1}-\bar{x_2}}{SE_{(\bar{x_1}-\bar{x_2})}} \\ & = \frac{\bar{x_1}-\bar{x_2}}{\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{(n_1-1)+(n_2-1)}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \end{align} }[/math]
Large discrepancy in SDs between groups
  • Bootstrap
  • Non-parametric
  • Fisher-Behrens
  • Welch
≥ 3 means
  • One-way ANOVA
  • Linear-regression model
  • Repeated measures ANOVA
  • Kruskall-Wallis test

*needs try to transform data into parametric (e.g., logarithmic), or other considerations