「Regression model」の版間の差分
ナビゲーションに移動
検索に移動
Vaccipedia.admin (トーク | 投稿記録) |
Vaccipedia.admin (トーク | 投稿記録) |
||
25行目: | 25行目: | ||
| | | | ||
*'''Simple binary logistic regression''' | *'''Simple binary logistic regression''' | ||
− | ::<math>\log Y = a + bX</math><br>where <math>Y</math> is odds of outcome | + | ::<math>\log Y = a + bX</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math> |
| | | | ||
*'''Multivariable† binary logistic regression''' | *'''Multivariable† binary logistic regression''' | ||
− | ::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is odds of outcome | + | ::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math> |
|- | |- | ||
52行目: | 52行目: | ||
| | | | ||
*'''Multivariable Poisson regression''' | *'''Multivariable Poisson regression''' | ||
− | ::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is rate ratio | + | ::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''rate ratio''' <math>\frac{events_1/person \cdot time}{events_2/person \cdot time}</math> |
|- | |- |
2023年2月2日 (木) 19:47時点における版
Classification of Regression models
Independent variable (exposure) | |||
---|---|---|---|
Univariable (single variable) | Multivariable (multiple variables) | ||
Dependent variable (outcome) |
Continuous |
|
|
Binary |
|
| |
Multinominal ≥ 3 |
|
| |
Ordinal |
|
| |
Rate ratio |
| ||
Survival time |
|
†'Multivariable' can be rephrased as 'Multiple'; Multivariable is NOT equal to 'Multivariate'!!
Penalized multivariable logistic regression model
- Penalized Logistic Regression Essentials in R: Ridge, Lasso and Elastic Net
- 罰則付き・正則化回帰モデルについて(About penalized/regularized regression model)