「Regression model」の版間の差分
ナビゲーションに移動
検索に移動
Vaccipedia.admin (トーク | 投稿記録) |
Vaccipedia.admin (トーク | 投稿記録) |
||
67行目: | 67行目: | ||
†'Multivariable' can be rephrased as 'Multiple'; Multivariable is <font color="red">'''NOT equal to 'Multivariate'!!'''</font> | †'Multivariable' can be rephrased as 'Multiple'; Multivariable is <font color="red">'''NOT equal to 'Multivariate'!!'''</font> | ||
+ | |||
+ | ===How to convert coefficient of binary logistic regressoin to odds ratio=== | ||
+ | About a binary logistic regression formula | ||
+ | :<math> | ||
+ | \log Y = \log \frac{p}{1-p} = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \begin{array}{lcl} | ||
+ | \log Y & = & a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ | ||
+ | \log \frac{p}{1-p} & = & a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ | ||
+ | \end{array} | ||
+ | </math> | ||
==Generalized linear model== | ==Generalized linear model== |
2023年2月4日 (土) 17:32時点における版
目次
Classification of Regression models
Independent variable (exposure) | ||||
---|---|---|---|---|
Univariable (single variable) | Multivariable (multiple variables) | How to derive coefficients [math]\displaystyle{ b_i }[/math] | ||
Dependent variable (outcome) |
Continuous |
|
|
Least squares method |
Binary |
|
|
Maximum likelihood estimation method | |
Multinominal ≥ 3 |
|
|
Maximum likelihood estimation method | |
Ordinal |
|
|
Maximum likelihood estimation method | |
Rate ratio |
|
Maximum likelihood estimation method | ||
Survival time |
|
Maximum likelihood estimation method |
†'Multivariable' can be rephrased as 'Multiple'; Multivariable is NOT equal to 'Multivariate'!!
How to convert coefficient of binary logistic regressoin to odds ratio
About a binary logistic regression formula
- [math]\displaystyle{ \log Y = \log \frac{p}{1-p} = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
[math]\displaystyle{ \begin{array}{lcl} \log Y & = & a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ \log \frac{p}{1-p} & = & a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ \end{array} }[/math]
Generalized linear model
Penalized multivariable logistic regression model
- Penalized Logistic Regression Essentials in R: Ridge, Lasso and Elastic Net
- 罰則付き・正則化回帰モデルについて(About penalized/regularized regression model)