「Regression model」の版間の差分

提供: Vaccipedia | Resources for Vaccines, Tropical medicine and Travel medicine
ナビゲーションに移動 検索に移動
25行目: 25行目:
 
|
 
|
 
*'''Simple binary logistic regression'''
 
*'''Simple binary logistic regression'''
::<math>\log Y = a + bX</math><br>where <math>Y</math> is odds of outcome
+
::<math>\log Y = a + bX</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math>
  
 
|
 
|
 
*'''Multivariable&dagger; binary logistic regression'''
 
*'''Multivariable&dagger; binary logistic regression'''
::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is odds of outcome
+
::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math>
  
 
|-
 
|-
52行目: 52行目:
 
|
 
|
 
*'''Multivariable Poisson regression'''
 
*'''Multivariable Poisson regression'''
::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is rate ratio
+
::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''rate ratio''' <math>\frac{events_1/person \cdot time}{events_2/person \cdot time}</math>
  
 
|-
 
|-

2023年2月2日 (木) 19:47時点における版

Basics & Definition
Epidemiology
Odds in statistics and Odds in a horse race
Collider bias
Data distribution
Statistical test
Regression model
Multivariate analysis
Marginal effects
Prediction and decision
Table-related commands in STATA
Missing data and imputation

Classification of Regression models

Independent variable (exposure)
Univariable (single variable) Multivariable (multiple variables)
Dependent
variable
(outcome)
Continuous
  • Simple linear regression
[math]\displaystyle{ Y = a + bX }[/math]
  • Multivariable† linear regression
[math]\displaystyle{ Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
Binary
  • Simple binary logistic regression
[math]\displaystyle{ \log Y = a + bX }[/math]
where [math]\displaystyle{ Y }[/math] is odds of outcome [math]\displaystyle{ \frac{p}{1-p} }[/math]
  • Multivariable† binary logistic regression
[math]\displaystyle{ \log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
where [math]\displaystyle{ Y }[/math] is odds of outcome [math]\displaystyle{ \frac{p}{1-p} }[/math]
Multinominal
≥ 3
  • Simple multinominal logistic regression
  • Multivariable† multinominal logistic regression
Ordinal
  • Simple ordinal logistic regression
  • Multivariable† ordinal logistic regression
Rate ratio
  • Multivariable Poisson regression
[math]\displaystyle{ \log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
where [math]\displaystyle{ Y }[/math] is rate ratio [math]\displaystyle{ \frac{events_1/person \cdot time}{events_2/person \cdot time} }[/math]
Survival time
  • Multivariable proportional hazard regression
    = Cox hazard regression
[math]\displaystyle{ \log h(T) = \log h_0(T) + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
where [math]\displaystyle{ h(T) }[/math] is the hazard at time [math]\displaystyle{ T }[/math]
and [math]\displaystyle{ h_0(T) }[/math] is the baseline hazard at time [math]\displaystyle{ T }[/math]

†'Multivariable' can be rephrased as 'Multiple'; Multivariable is NOT equal to 'Multivariate'!!

Penalized multivariable logistic regression model

Restricted cubic spline