提供: Vaccipedia | Resources for Vaccines, Tropical medicine and Travel medicine
ナビゲーションに移動
検索に移動
Classification of Regression models
|
Independent variable (exposure)
|
Univariable (single variable)
|
Multivariable (multiple variables)
|
Dependent variable (outcome)
|
Continuous
|
- [math]\displaystyle{ Y = a + bX }[/math]
|
- Multivariable† linear regression
- [math]\displaystyle{ Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
|
Binary
|
- Simple binary logistic regression
- [math]\displaystyle{ \log Y = a + bX }[/math]
where [math]\displaystyle{ Y }[/math] is odds of outcome
|
- Multivariable† binary logistic regression
- [math]\displaystyle{ \log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
where [math]\displaystyle{ Y }[/math] is odds of outcome
|
Multinominal ≥ 3
|
- Simple multinominal logistic regression
|
- Multivariable† multinominal logistic regression
|
Ordinal
|
- Simple ordinal logistic regression
|
- Multivariable† ordinal logistic regression
|
Rate ratio
|
|
- Multivariable Poisson regression
- [math]\displaystyle{ \log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
where [math]\displaystyle{ Y }[/math] is rate ratio
|
Survival time
|
|
- Multivariable proportional hazard regression
= Cox hazard regression
- [math]\displaystyle{ \log h(T) = \log h_0(T) + b_1X_1 + b_2X_2 + b_3X_3 + \cdots }[/math]
where [math]\displaystyle{ h(T) }[/math] is the hazard at time [math]\displaystyle{ T }[/math] and [math]\displaystyle{ h_0(T) }[/math] is the baseline hazard at time [math]\displaystyle{ T }[/math]
|
†'Multivariable' can be rephrased as 'Multiple'; Multivariable is NOT equal to 'Multivariate'!!
Penalized multivariable logistic regression model
Restricted cubic spline