*'''Logistic Single binary logistic regression'''::<math>\log Y = a + bX</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math>|*'''Multivariable† binary logistic regression'''::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''odds ''' of outcome<math>\frac{p}{1-p}</math>|Maximum likelihood estimation method|-!Multinominal<br>≥ 3|*'''Single multinominal logistic regression'''|*'''Multivariable† multinominal logistic regression'''|Maximum likelihood estimation method|-!Ordinal|*'''Single ordinal logistic regression'''|*'''Multivariable† ordinal logistic regression'''|Maximum likelihood estimation method|-!Rate ratio||*'''Multivariable Poisson regression'''::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''rate ratio''' <math>\frac{events_1/person \text{-} time_1}{events_2/person \text{-} time_2}</math>
|
*'''Multiple logistic regression'''::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is odds of outcomeMaximum likelihood estimation method
|-
!Survival time
|
|
*'''Multiple Multivariable proportional hazard regression'''<br>= '''Cox hazard regression'''::<math>\log h(T) = \log h_0(T) + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>h(T)</math> is the hazard at time <math>T</math><br>and <math>h_0(T)</math> is the baseline hazard at time <math>T</math>|Maximum likelihood estimation method
|}
†'Multivariable' can be rephrased as 'Multiple'; Multivariable is <font color="red">'''NOT equal to 'Multivariate'!!'''</font>
==Binary logistic regression==
===Conversion of logit of outcome odds to outcome probability <math>p</math>===
Equation of binary logistic regression can be converted to outcome probablity <math>p</math> as,
When thinking about outcome probability <math>p</math> and the changed outcome probability <math>p\prime</math> by adding <math>1</math> to explanatory variable <math>X_1</math>, the following two equations are obtained,
Because <math>\dfrac{p\prime}{1-p\prime}</math> and <math>\dfrac{p}{1-p}</math> are odds of <math>p\prime</math> and <math>p</math>, respectively,
<math>\frac {\left ( \dfrac{p\prime}{1-p\prime} \right )}{ \left ( \dfrac{p}{1-p} \right ) }</math> is the '''odds ratio''' of [the probability when <math>1</math> is added to <math>X_1</math>] to [the probability before adding].
Thus, converted <math>b_1</math> to <math>\color{red}{e^{b_1}}</math> or <math>\color{red}{\exp (b_1)}</math> gives the '''odds ratio of outocome probabilities''' before and after variable <math>X_1</math> gains <math>1</math>.