「Regression model」の版間の差分
Vaccipedia.admin (トーク | 投稿記録) |
Vaccipedia.admin (トーク | 投稿記録) |
||
(同じ利用者による、間の24版が非表示) | |||
1行目: | 1行目: | ||
− | {{ | + | {{Floating_Menu}} |
==Classification of Regression models== | ==Classification of Regression models== | ||
6行目: | 6行目: | ||
|- | |- | ||
!colspan="2" rowspan="2" style="width:150px"| | !colspan="2" rowspan="2" style="width:150px"| | ||
− | !colspan=" | + | !colspan="3"|Independent variable (exposure) |
|- | |- | ||
− | !style="width:300px"| | + | !style="width:300px"|Univariable (single variable) |
!style="width:300px"|Multivariable (multiple variables) | !style="width:300px"|Multivariable (multiple variables) | ||
+ | !How to derive coefficients <math>b_i</math> | ||
|- | |- | ||
− | !rowspan=" | + | !rowspan="6"|Dependent<br>variable<br>(outcome) |
!Continuous | !Continuous | ||
| | | | ||
− | *''' | + | *'''Single linear regression''' |
::<math>Y = a + bX</math> | ::<math>Y = a + bX</math> | ||
− | |||
| | | | ||
− | *''' | + | *'''Multivariable† linear regression''' |
::<math>Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math> | ::<math>Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math> | ||
− | + | | | |
+ | Least squares method | ||
|- | |- | ||
!Binary | !Binary | ||
| | | | ||
− | *''' | + | *'''Single binary logistic regression''' |
− | ::<math>\log Y = a + bX</math><br>where <math>Y</math> is odds of outcome | + | ::<math>\log Y = a + bX</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math> |
− | + | | | |
+ | *'''Multivariable† binary logistic regression''' | ||
+ | ::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''odds''' of outcome <math>\frac{p}{1-p}</math> | ||
| | | | ||
− | + | Maximum likelihood estimation method | |
− | |||
− | |||
|- | |- | ||
!Multinominal<br>≥ 3 | !Multinominal<br>≥ 3 | ||
| | | | ||
− | *''' | + | *'''Single multinominal logistic regression''' |
− | + | | | |
+ | *'''Multivariable† multinominal logistic regression''' | ||
| | | | ||
− | + | Maximum likelihood estimation method | |
− | |||
|- | |- | ||
!Ordinal | !Ordinal | ||
| | | | ||
− | *''' | + | *'''Single ordinal logistic regression''' |
− | + | | | |
+ | *'''Multivariable† ordinal logistic regression''' | ||
+ | | | ||
+ | Maximum likelihood estimation method | ||
+ | |- | ||
+ | !Rate ratio | ||
+ | | | ||
+ | | | ||
+ | *'''Multivariable Poisson regression''' | ||
+ | ::<math>\log Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>Y</math> is '''rate ratio''' <math>\frac{events_1/person \text{-} time_1}{events_2/person \text{-} time_2}</math> | ||
| | | | ||
− | + | Maximum likelihood estimation method | |
− | |||
|- | |- | ||
!Survival time | !Survival time | ||
| | | | ||
| | | | ||
− | *''' | + | *'''Multivariable proportional hazard regression'''<br>= '''Cox hazard regression''' |
::<math>\log h(T) = \log h_0(T) + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>h(T)</math> is the hazard at time <math>T</math><br>and <math>h_0(T)</math> is the baseline hazard at time <math>T</math> | ::<math>\log h(T) = \log h_0(T) + b_1X_1 + b_2X_2 + b_3X_3 + \cdots</math><br>where <math>h(T)</math> is the hazard at time <math>T</math><br>and <math>h_0(T)</math> is the baseline hazard at time <math>T</math> | ||
+ | | | ||
+ | Maximum likelihood estimation method | ||
|} | |} | ||
− | †' | + | †'Multivariable' can be rephrased as 'Multiple'; Multivariable is <font color="red">'''NOT equal to 'Multivariate'!!'''</font> |
+ | |||
+ | ==Binary logistic regression== | ||
+ | ===Conversion of logit of outcome odds to outcome probability <math>p</math>=== | ||
+ | Equation of binary logistic regression can be converted to outcome probablity <math>p</math> as, | ||
+ | :<math> | ||
+ | \begin{array}{lrll} | ||
+ | \log Y = & \log \left ( \dfrac{p}{1-p} \right ) & = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ | ||
+ | \Leftrightarrow & \dfrac{p}{1-p} & = \exp (a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots) | ||
+ | & = e^{(a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots)} \\ | ||
+ | \Leftrightarrow & p & = \dfrac { \exp (a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots) }{ 1 + \exp (a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots) } | ||
+ | & = \dfrac { e^{(a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots)} }{ 1 + e^{(a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots)} } \\ | ||
+ | \end{array} | ||
+ | </math> | ||
+ | |||
+ | ===Conversion of coefficient to odds ratio=== | ||
+ | When thinking about outcome probability <math>p</math> and the changed outcome probability <math>p\prime</math> by adding <math>1</math> to explanatory variable <math>X_1</math>, the following two equations are obtained, | ||
+ | :<math> | ||
+ | \begin{array}{lcl} | ||
+ | \log \left ( \dfrac{p}{1-p} \right ) & = & a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ | ||
+ | \log \left ( \dfrac{p\prime}{1-p\prime} \right ) & = & a + b_1( {\color{red}X_1 + 1} ) + b_2X_2 + b_3X_3 + \cdots | ||
+ | \end{array} | ||
+ | </math> | ||
+ | |||
+ | Subtraction of these two equations makes, | ||
+ | :<math> | ||
+ | \begin{align} | ||
+ | \log \left ( \frac{p\prime}{1-p\prime} \right ) - \log \left ( \frac{p}{1-p} \right ) & = b_1({\color{red}X_1 + 1}) - b_1X_1 \\ | ||
+ | & = b_1 \\ | ||
+ | \Leftrightarrow \frac {\left ( \dfrac{p\prime}{1-p\prime} \right )}{ \left ( \dfrac{p}{1-p} \right ) } & = \exp (b_1) = e^{b_1} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | Because <math>\dfrac{p\prime}{1-p\prime}</math> and <math>\dfrac{p}{1-p}</math> are odds of <math>p\prime</math> and <math>p</math>, respectively, | ||
+ | |||
+ | <math>\frac {\left ( \dfrac{p\prime}{1-p\prime} \right )}{ \left ( \dfrac{p}{1-p} \right ) }</math> is the '''odds ratio''' of [the probability when <math>1</math> is added to <math>X_1</math>] to [the probability before adding]. | ||
+ | |||
+ | |||
+ | Thus, converted <math>b_1</math> to <math>\color{red}{e^{b_1}}</math> or <math>\color{red}{\exp (b_1)}</math> gives the '''odds ratio of outocome probabilities''' before and after variable <math>X_1</math> gains <math>1</math>. | ||
+ | |||
+ | ::<math> | ||
+ | \begin{align} | ||
+ | \exp (\text{coefficient}) = e^{\text{coefficient}} & = \text{odds ratio} \\ | ||
+ | \log (\text{odds ratio}) & = \text{coefficient} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | ==Generalized linear model== | ||
+ | |||
+ | ==Penalized multivariable logistic regression model== | ||
+ | *[http://www.sthda.com/english/articles/36-classification-methods-essentials/149-penalized-logistic-regression-essentials-in-r-ridge-lasso-and-elastic-net/ Penalized Logistic Regression Essentials in R: Ridge, Lasso and Elastic Net] | ||
+ | *[https://jojoshin.hatenablog.com/entry/2016/07/06/180923 罰則付き・正則化回帰モデルについて(About penalized/regularized regression model)] | ||
+ | |||
+ | ==Restricted cubic spline== | ||
+ | *[https://statakahiro.com/restricted-cubic-splines%E3%82%92stata%E3%81%A7%E5%AE%9F%E8%A1%8C%E3%81%97%E3%81%A6%E3%81%BF%E3%82%8B Restricted cubic splinesをStataで実行してみる] |
2023年9月10日 (日) 13:19時点における最新版
Navigation Menu |
General issues of Vaccine | |||||||
---|---|---|---|---|---|---|---|
|
General issues of Travel med. | ||||||||
---|---|---|---|---|---|---|---|---|
|
Immunology | |||||||
---|---|---|---|---|---|---|---|
|
Epi & Stats | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Virus | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
COVID-19 | |||||
---|---|---|---|---|---|
|
Bacteria | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Rickettsia | |||||
---|---|---|---|---|---|
|
Protozoa | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Fungi | |||||||
---|---|---|---|---|---|---|---|
|
Nematode (roundworm) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Trematode (fluke, distoma) | |||||||
---|---|---|---|---|---|---|---|
|
Cestode (tapeworm) | ||||||
---|---|---|---|---|---|---|
|
Medical Zoology | ||||||||
---|---|---|---|---|---|---|---|---|
|
目次
Classification of Regression models
Independent variable (exposure) | ||||
---|---|---|---|---|
Univariable (single variable) | Multivariable (multiple variables) | How to derive coefficients [math]\displaystyle{ b_i }[/math] | ||
Dependent variable (outcome) |
Continuous |
|
|
Least squares method |
Binary |
|
|
Maximum likelihood estimation method | |
Multinominal ≥ 3 |
|
|
Maximum likelihood estimation method | |
Ordinal |
|
|
Maximum likelihood estimation method | |
Rate ratio |
|
Maximum likelihood estimation method | ||
Survival time |
|
Maximum likelihood estimation method |
†'Multivariable' can be rephrased as 'Multiple'; Multivariable is NOT equal to 'Multivariate'!!
Binary logistic regression
Conversion of logit of outcome odds to outcome probability [math]\displaystyle{ p }[/math]
Equation of binary logistic regression can be converted to outcome probablity [math]\displaystyle{ p }[/math] as,
- [math]\displaystyle{ \begin{array}{lrll} \log Y = & \log \left ( \dfrac{p}{1-p} \right ) & = a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ \Leftrightarrow & \dfrac{p}{1-p} & = \exp (a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots) & = e^{(a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots)} \\ \Leftrightarrow & p & = \dfrac { \exp (a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots) }{ 1 + \exp (a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots) } & = \dfrac { e^{(a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots)} }{ 1 + e^{(a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots)} } \\ \end{array} }[/math]
Conversion of coefficient to odds ratio
When thinking about outcome probability [math]\displaystyle{ p }[/math] and the changed outcome probability [math]\displaystyle{ p\prime }[/math] by adding [math]\displaystyle{ 1 }[/math] to explanatory variable [math]\displaystyle{ X_1 }[/math], the following two equations are obtained,
- [math]\displaystyle{ \begin{array}{lcl} \log \left ( \dfrac{p}{1-p} \right ) & = & a + b_1X_1 + b_2X_2 + b_3X_3 + \cdots \\ \log \left ( \dfrac{p\prime}{1-p\prime} \right ) & = & a + b_1( {\color{red}X_1 + 1} ) + b_2X_2 + b_3X_3 + \cdots \end{array} }[/math]
Subtraction of these two equations makes,
- [math]\displaystyle{ \begin{align} \log \left ( \frac{p\prime}{1-p\prime} \right ) - \log \left ( \frac{p}{1-p} \right ) & = b_1({\color{red}X_1 + 1}) - b_1X_1 \\ & = b_1 \\ \Leftrightarrow \frac {\left ( \dfrac{p\prime}{1-p\prime} \right )}{ \left ( \dfrac{p}{1-p} \right ) } & = \exp (b_1) = e^{b_1} \end{align} }[/math]
Because [math]\displaystyle{ \dfrac{p\prime}{1-p\prime} }[/math] and [math]\displaystyle{ \dfrac{p}{1-p} }[/math] are odds of [math]\displaystyle{ p\prime }[/math] and [math]\displaystyle{ p }[/math], respectively,
[math]\displaystyle{ \frac {\left ( \dfrac{p\prime}{1-p\prime} \right )}{ \left ( \dfrac{p}{1-p} \right ) } }[/math] is the odds ratio of [the probability when [math]\displaystyle{ 1 }[/math] is added to [math]\displaystyle{ X_1 }[/math]] to [the probability before adding].
Thus, converted [math]\displaystyle{ b_1 }[/math] to [math]\displaystyle{ \color{red}{e^{b_1}} }[/math] or [math]\displaystyle{ \color{red}{\exp (b_1)} }[/math] gives the odds ratio of outocome probabilities before and after variable [math]\displaystyle{ X_1 }[/math] gains [math]\displaystyle{ 1 }[/math].
- [math]\displaystyle{ \begin{align} \exp (\text{coefficient}) = e^{\text{coefficient}} & = \text{odds ratio} \\ \log (\text{odds ratio}) & = \text{coefficient} \end{align} }[/math]
Generalized linear model
Penalized multivariable logistic regression model
- Penalized Logistic Regression Essentials in R: Ridge, Lasso and Elastic Net
- 罰則付き・正則化回帰モデルについて(About penalized/regularized regression model)