「Statistical test」の版間の差分

提供: Vaccipedia | Resources for Vaccines, Tropical medicine and Travel medicine
ナビゲーションに移動 検索に移動
 
2行目: 2行目:
  
 
==Basic concept of statistical tests==
 
==Basic concept of statistical tests==
 
+
*First remind that
 +
**Statistical test is to test
  
 
==Comparing Proportions==
 
==Comparing Proportions==

2023年9月25日 (月) 19:48時点における最新版

Navigation Menu Vac logo.png
General issues of Vaccine
Cold chain
Correlates of Protection
Vaccines for Asplenia
Vaccines for Pregnant women
Vaccines for Immunocompromised hosts
Vaccine hesitancy
Additional materials of vaccine
General issues of Tropical med.
Definition of Tropical Medicine
Matrices of tropical infection
General issues of Helminths
Neglected Tropical Diseases
Sexually-transmitted infections
Non-Communicable Diseases
Maternal health and contraception
Child health
Malnutrition and Micronutrient
Eosinophilia
Fever in the tropics
Diarrhea in the tropics
Anemia in the tropics
Dermatology in the tropics
Ophthalmology in the tropics
Neurology in the tropics
Mental health in the tropics
Surgery in the tropics
Humanitarian emergency
Epidemiology in outbreak
Antimicrobial resistance
Pathology of infectious diseases
General issues of Travel med.
Epidemiology of Travel health
Last minute traveler
Time zone issue
High altitude medicine
Diving medicine
Pregnancy and travel
Children and travel
Elderly and travel
Immunology
Principle of human immune system
Innate immunity
Cellular immunity
Humoral immunity
Neutralizing antibody and its assay
Antigenic Cartography
Additional materials of immunology
Epi & Stats
Basics & Definition
Epidemiology
Odds in statistics and Odds in a horse race
Collider bias
Data distribution
Statistical test
Regression model
Multivariate analysis
Marginal effects
Prediction and decision
Table-related commands in STATA
Missing data and imputation
Virus
HIV
HIV-TB co-infection
HIV-STI interaction
Viral Hemorrhagic Fever
Ebola
Crimean-Congo hemorrhagic fever
SFTS
Rabies
Polio
Dengue
Yellow fever
Chikungunya
Zika
Japanese encephalitis
Tick-borne encephalitis
Viral hepatitis
Measles
Smallpox and Monkeypox
Respiratory Syncytial virus
COVID-19
Bivalent BA.1/BA.4-5 mRNA vaccines
Monovalent XBB-1.5 mRNA vaccine
Private archives of the initial phase of the pandemic
Private archives of lecture materials of COVID vaccine as of March 2021
厚生労働省が発出する保健行政関連の文書の読み解き方
Bacteria
Bacteriological tests
Tuberculosis
Tuberculosis in Children
HIV-TB co-infection
Leprosy
Dermatological mycobacterium infecions
Syphilis and Yaws
Plague
Pneumococcus
Meningococcus
Typhoid
Salmonellosis
Melioidosis
Leptospirosis
Brucellosis
Bartonellosis
Lyme disease and Relapsing fever
Tularaemia
Tetanus
Diphtheria
Anthrax
Coxiellosis
Rickettsia
Rickettsiosis
Scrub typhus
Spotted fevers
Epidemic typhus
Murine typhus
Protozoa
Overview of protozoa
Overview of medicine for protozoa
Malaria
Chagas disease
African trypanosomiasis
Leishmaniasis
Trichomoniasis
Toxoplasmosis
Amoebiasis
Giardiasis
Cryptosporidiosis
Cyclosporiasis
Isosporiasis
Pentatrichomoniasis
Microsporidiasis
Babesiosis
Fungi
General issues of fungi
Coccidioidomycosis
Paracoccidioidomycosis
Histoplasmosis
Talaromycosis
Blastomycosis
Sporotrichosis
Nematode (roundworm)
Nematode principles
Lympatic filariasis
Onchocerciasis
Loiasis
Microscopic differentiation of microfilariae
Strongyloidiasis
Ascariasis
Ancylostomiasis (hookworm)
Trichuriasis (whipworm)
Enterobiasis (pinworm)
Angiostrongyliasis (rat lungworm)
Dracunculiasis (Guinea worm)
Anisakiasis
Trichinellosis (Trichinosis)
Gnathostomiasis
Spirurinasis
Soil-transmitted helminths
Trematode (fluke, distoma)
General issues of Helminths
Trematode principles
Schistosomiasis
Clonorchiasis
Fascioliasis
Paragonimiasis
Metagonimiasis
Cestode (tapeworm)
General issues of Helminths
Cestode principles
Diphyllobothriasis
Sparganosis
Taeniasis
Echinococcosis
Medical Zoology
Zoonosis
Insectology
Mosquitology
Acarology
Batology
Snake toxicology
Scorpion and spider toxicology
Marine toxicology

Chevron-up-blue.png

Basic concept of statistical tests

  • First remind that
    • Statistical test is to test

Comparing Proportions

Independent samples
(Unpaired in case of two)
Dependent samples
(Paired in case of two)
2 proportions
  • Z test
[math]\displaystyle{ \begin{align} z & = \frac{p_1-p_2}{SE_{pooled(p_1-p_2)}} \\ & = \frac{p_1-p_2}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_1}+\frac{\bar{p}(1-\bar{p})}{n_2}}} \end{align} }[/math]
≥ 3 proportions Enough large sample
  • [math]\displaystyle{ \chi^2 }[/math] test
[math]\displaystyle{ \chi^2 = \sum \frac{(O - E)^2}{E} }[/math]
[math]\displaystyle{ O }[/math] = observed values
[math]\displaystyle{ E }[/math] = expected values
  • McNemar's [math]\displaystyle{ \chi^2 }[/math] test
[math]\displaystyle{ \begin{align} & McNemar's\ \chi^2 \\ & = \frac{(n_1-n_2)^2}{n_1+n_2} \end{align} }[/math]
[math]\displaystyle{ n_i }[/math] = number of observations in discordant pair
Testing linear association
  • [math]\displaystyle{ \chi^2 }[/math] trend test
[math]\displaystyle{ \begin{align} & \chi^2 trend \\ & = \frac{(\bar{x_1}-\bar{x_2})^2}{s^2(\frac{1}{n_1}+\frac{1}{n_2})} \\ & s = \sqrt{\sum \frac{(x_i-\bar{x_i})^2}{n-1}} \end{align} }[/math]
[math]\displaystyle{ x_i }[/math] = weighted values
[math]\displaystyle{ n_i }[/math] = number of observations
≥1 cell expected value <5

Fisher's exact test

  • very rare in real researches

Comparing Means

Parametric
i.e., normally distributed
Non-parametric
i.e., not normally distributed
Independent samples
(Unpaired in case of two)
Dependent samples
(Paired in case of two)
Independent samples
(Unpaired in case of two)
Dependent samples
(Paired in case of two)
2 means Enough large sample
  • Z test
[math]\displaystyle{ \begin{align} z & = \frac{\bar{x_1}-\bar{x_2}}{SE_{(\bar{x_1}-\bar{x_2})}} \\ & = \frac{\bar{x_1}-\bar{x_2}}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}} \end{align} }[/math]
  • Paired Student's t test
[math]\displaystyle{ H_0 }[/math] is mean of paired differences in the population is zero.
[math]\displaystyle{ \begin{align} paired\ t & = \frac{\bar{d}}{SE_d} \\ & = \frac{\bar{d}}{\frac{s}{\sqrt{n}}} \\ \end{align} }[/math]
where [math]\displaystyle{ \bar{d} }[/math] is the mean of differences of paired observations
  • Wilcoxon rank sum test
    =Mann-Whitney test
[math]\displaystyle{ H_0 }[/math] is medians or means of ranks in the two populations are the same
  1. To rank whole combined observations of two groups
  2. To separate back the ranks into two groups
  3. To look up critical range relevant to both numbers of observations and whether the sum of ranks in the group of smaller number of observation (=statistics) is outside the range or not
if outside the range, p-value is smaller than designated
  • Wilcoxon signed rank test
[math]\displaystyle{ H_0 }[/math] is median of paired differences in the population is zero
  1. To calculate differences between pairs and discard 0 differences
  2. To rank the absolute values of differences (ignoring 0)
  3. To make the sum of ranks of positive difference and the sum of ranks of negative differences ('signed rank')
  4. To look up critical value relevant to numbers of pairs with non-0 differences and whether the smaller sum of rank (=statistics) is smaller than the critical value
if smaller than the critical value, p-value is smaller than designated
Small sample size <30 in a group
  • Student's t test
[math]\displaystyle{ \begin{align} t & = \frac{\bar{x_1}-\bar{x_2}}{SE_{(\bar{x_1}-\bar{x_2})}} \\ & = \frac{\bar{x_1}-\bar{x_2}}{\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{(n_1-1)+(n_2-1)}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \end{align} }[/math]
Large discrepancy in SDs between groups
  • Bootstrap
  • Non-parametric
  • Fisher-Behrens
  • Welch
≥ 3 means
  • One-way ANOVA
[math]\displaystyle{ \begin{align} F & = \frac{ \sum_{j=1}^k \sum_{j=1}^{n_j} (x_{ij}-\bar{x_j})^2 }{ k-1 } \\ & \div \frac{ \sum_{j=1}^k (\bar{x_j}-\bar{x})^2 }{ n-k } \end{align} }[/math]
[math]\displaystyle{ n }[/math] is sample size (whole combined number of observations)
[math]\displaystyle{ k }[/math] is number of groups


  • Linear regression model
  • Repeated measures ANOVA
  • Kruskall-Wallis test
[math]\displaystyle{ H_0 }[/math] is medians or means of ranks in the all populations are the same
  1. To rank whole combined observations of all groups
  2. To separate back the ranks into original groups
  3. To make sum of ranks in each group
[math]\displaystyle{ H = \frac{n-1}{n} \sum_{i=1}^k \frac{n_i(\bar{R}-E_R)}{s^2} }[/math]
[math]\displaystyle{ H }[/math] is Kruskal-Wallis statistics
[math]\displaystyle{ n_i }[/math] is number of observations in group [math]\displaystyle{ i }[/math]
[math]\displaystyle{ \bar{R} }[/math] is the mean of rank sum in group [math]\displaystyle{ i }[/math]
[math]\displaystyle{ E_R }[/math] is expected value of the rankings
[math]\displaystyle{ s^2 }[/math] is the variance of rank
To look up critical values relevant to sum of ranks in the group of smaller number of observation
  • *needs try to transform data into parametric (e.g., logarithmic), or other considerations

Comparing Survival time

Life table Kaplan-Meyer
  • Log rank test
    = Mantel-Cox [math]\displaystyle{ \chi^2 }[/math] test
[math]\displaystyle{ H_0 }[/math] is event (survival) rates in each interval are all the same in two groups
[math]\displaystyle{ Log\ rank\ statistics = \frac{}{} }[/math]